Show commands: SageMath
Rank
The elliptic curves in class 290160dq have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 290160dq do not have complex multiplication.Modular form 290160.2.a.dq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 290160dq
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 290160.dq4 | 290160dq1 | \([0, 0, 0, -5518587, 4989876266]\) | \(6224721371657832889/2942222400\) | \(8785429010841600\) | \([2]\) | \(7299072\) | \(2.3964\) | \(\Gamma_0(N)\)-optimal |
| 290160.dq3 | 290160dq2 | \([0, 0, 0, -5547387, 4935162026]\) | \(6322686217296773689/135260510172840\) | \(403885719207937474560\) | \([2]\) | \(14598144\) | \(2.7430\) | |
| 290160.dq2 | 290160dq3 | \([0, 0, 0, -6557547, 2980207514]\) | \(10443846301537515049/4758933504000000\) | \(14210099300007936000000\) | \([2]\) | \(21897216\) | \(2.9457\) | |
| 290160.dq1 | 290160dq4 | \([0, 0, 0, -52637547, -144945808486]\) | \(5401609226997647595049/86393158323264000\) | \(257968588462733131776000\) | \([2]\) | \(43794432\) | \(3.2923\) |