Show commands for:
SageMath
sage: E = EllipticCurve("290145.f1")
sage: E.isogeny_class()
Elliptic curves in class 290145f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
290145.f1 | 290145f1 | [1, 1, 1, -314131, 67630928] | [2] | 1451520 | \(\Gamma_0(N)\)-optimal |
290145.f2 | 290145f2 | [1, 1, 1, -293106, 77100588] | [2] | 2903040 |
Rank
sage: E.rank()
The elliptic curves in class 290145f have rank \(1\).
Modular form 290145.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.