# Properties

 Label 289800.el1 Conductor $289800$ Discriminant $-1.016\times 10^{16}$ j-invariant $$-\frac{144814859264}{435654247}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -31260, -5296300])

gp: E = ellinit([0, 0, 0, -31260, -5296300])

magma: E := EllipticCurve([0, 0, 0, -31260, -5296300]);

$$y^2=x^3-31260x-5296300$$

## Mordell-Weil group structure

$\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(530, 11270\right)$$ $\hat{h}(P)$ ≈ $0.46787861168659329422531840323$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(236,\pm 686)$$, $$(530,\pm 11270)$$, $$(9329,\pm 900893)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$289800$$ = $2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 23$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-10162942274016000$ = $-1 \cdot 2^{8} \cdot 3^{6} \cdot 5^{3} \cdot 7^{7} \cdot 23^{2}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{144814859264}{435654247}$$ = $-1 \cdot 2^{10} \cdot 7^{-7} \cdot 23^{-2} \cdot 521^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.7582502174312440344031712466\dots$ Stable Faltings height: $0.34448647461536722211053738053\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $0.46787861168659329422531840323\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.16592644577627617055176553971\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $112$  = $2^{2}\cdot1\cdot2\cdot7\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $8.6949447302922284006966243819198354970$

## Modular invariants

Modular form 289800.2.a.el

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{7} + 3q^{11} - 3q^{13} + 3q^{17} - 2q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1559040 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_1^{*}$ Additive 1 3 8 0
$3$ $1$ $I_0^{*}$ Additive -1 2 6 0
$5$ $2$ $III$ Additive -1 2 3 0
$7$ $7$ $I_{7}$ Split multiplicative -1 1 7 7
$23$ $2$ $I_{2}$ Split multiplicative -1 1 2 2

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$.

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has no rational isogenies. Its isogeny class 289800.el consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.140.1 $$\Z/2\Z$$ Not in database $6$ 6.0.686000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ Deg 8 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.