Properties

Label 28900.c
Number of curves 2
Conductor 28900
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("28900.c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 28900.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
28900.c1 28900i2 [0, -1, 0, -1360708, -632550088] [] 311040  
28900.c2 28900i1 [0, -1, 0, 84292, -2530088] [] 103680 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 28900.c have rank \(1\).

Modular form 28900.2.a.c

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{7} - 2q^{9} - q^{13} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.