Show commands: SageMath
Rank
The elliptic curves in class 288a have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
Each elliptic curve in class 288a has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).Modular form 288.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 288a
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
|---|---|---|---|---|---|---|---|---|---|
| 288.a2 | 288a1 | \([0, 0, 0, 3, 0]\) | \(1728\) | \(-1728\) | \([2]\) | \(16\) | \(-0.68931\) | \(\Gamma_0(N)\)-optimal | \(-4\) |
| 288.a1 | 288a2 | \([0, 0, 0, -12, 0]\) | \(1728\) | \(110592\) | \([2]\) | \(32\) | \(-0.34273\) | \(-4\) |