# Properties

 Label 2888a1 Conductor $2888$ Discriminant $271737008656$ j-invariant $$1462911232$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, -153184, 23025409])

gp: E = ellinit([0, 1, 0, -153184, 23025409])

magma: E := EllipticCurve([0, 1, 0, -153184, 23025409]);

$$y^2=x^3+x^2-153184x+23025409$$

## Mordell-Weil group structure

$\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(120, 2527\right)$$ $\hat{h}(P)$ ≈ $0.86138215677827995182540412566$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(120,\pm 2527)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$2888$$ = $2^{3} \cdot 19^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $271737008656$ = $2^{4} \cdot 19^{8}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$1462911232$$ = $2^{8} \cdot 19 \cdot 67^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.5089869528116922122107992686\dots$ Stable Faltings height: $-0.68502142681924986426762972648\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $0.86138215677827995182540412566\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.81054026267019904106061799952\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $6$  = $2\cdot3$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $4.1891095176869376211286434486494314154$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} + 3q^{5} - 2q^{9} - 4q^{11} - 5q^{13} + 3q^{15} - 5q^{17} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 9576 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $III$ Additive 1 3 4 0
$19$ $3$ $IV^{*}$ Additive 1 2 8 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2Cn 4.4.0.2
$5$ 5S4 5.5.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add ordinary ordinary ss ordinary ordinary ordinary add ordinary ordinary ordinary ordinary ordinary ordinary ordinary - 5 1 1,1 1 1 1 - 1 1 1 1 1 1 1 - 0 0 0,0 0 0 0 - 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 2888a consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.3.361.1 $$\Z/2\Z \times \Z/2\Z$$ 3.3.361.1-512.1-b3 $8$ 8.2.291852315648.7 $$\Z/3\Z$$ Not in database $12$ 12.4.4452139149819904.3 $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive.