Properties

Label 28880y
Number of curves 4
Conductor 28880
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("28880.b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 28880y

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
28880.b3 28880y1 [0, 1, 0, -481, 2634] [2] 13824 \(\Gamma_0(N)\)-optimal
28880.b4 28880y2 [0, 1, 0, 1324, 19240] [2] 27648  
28880.b1 28880y3 [0, 1, 0, -14921, -706370] [2] 41472  
28880.b2 28880y4 [0, 1, 0, -13116, -881816] [2] 82944  

Rank

sage: E.rank()
 

The elliptic curves in class 28880y have rank \(1\).

Modular form 28880.2.a.b

sage: E.q_eigenform(10)
 
\( q - 2q^{3} - q^{5} - 2q^{7} + q^{9} - 2q^{13} + 2q^{15} - 6q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.