Properties

Label 2888.f
Number of curves $1$
Conductor $2888$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2888.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2888.f1 2888f1 \([0, -1, 0, -481, -23211]\) \(-1024/19\) \(-228831165184\) \([]\) \(2880\) \(0.86074\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2888.f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2888.f do not have complex multiplication.

Modular form 2888.2.a.f

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} - 3 q^{7} + q^{9} - 3 q^{11} + 4 q^{13} - 2 q^{15} + 5 q^{17} + O(q^{20})\) Copy content Toggle raw display