Properties

Label 2888.d
Number of curves $1$
Conductor $2888$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2888.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2888.d1 2888b1 \([0, 1, 0, -120, -976]\) \(-722\) \(-266897408\) \([]\) \(1008\) \(0.30928\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2888.d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2888.d do not have complex multiplication.

Modular form 2888.2.a.d

sage: E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{5} - 2 q^{9} + 3 q^{11} + 2 q^{13} - 4 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display