Properties

Label 2888.a
Number of curves $1$
Conductor $2888$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2888.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2888.a1 2888e1 \([0, -1, 0, -43440, 6433996]\) \(-722\) \(-12556423695976448\) \([]\) \(19152\) \(1.7815\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2888.a1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2888.a do not have complex multiplication.

Modular form 2888.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{5} - 2 q^{9} + 3 q^{11} - 2 q^{13} + 4 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display