Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2888.a1 |
2888e1 |
2888.a |
2888e |
$1$ |
$1$ |
\( 2^{3} \cdot 19^{2} \) |
\( - 2^{11} \cdot 19^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.1 |
|
$5.890280682$ |
$1$ |
|
$2$ |
$19152$ |
$1.781502$ |
$-722$ |
$[0, -1, 0, -43440, 6433996]$ |
\(y^2=x^3-x^2-43440x+6433996\) |
2888.b1 |
2888c1 |
2888.b |
2888c |
$1$ |
$1$ |
\( 2^{3} \cdot 19^{2} \) |
\( - 2^{11} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.969972136$ |
$1$ |
|
$2$ |
$2880$ |
$1.055040$ |
$-31250/19$ |
$[0, -1, 0, -3008, 91948]$ |
\(y^2=x^3-x^2-3008x+91948\) |
2888.c1 |
2888d1 |
2888.c |
2888d |
$1$ |
$1$ |
\( 2^{3} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 5$ |
2.2.0.1, 5.5.0.1 |
2Cn, 5S4 |
$1.535529438$ |
$1$ |
|
$0$ |
$504$ |
$0.036767$ |
$1462911232$ |
$[0, -1, 0, -424, -3223]$ |
\(y^2=x^3-x^2-424x-3223\) |
2888.d1 |
2888b1 |
2888.d |
2888b |
$1$ |
$1$ |
\( 2^{3} \cdot 19^{2} \) |
\( - 2^{11} \cdot 19^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.1 |
|
$4.590094418$ |
$1$ |
|
$2$ |
$1008$ |
$0.309282$ |
$-722$ |
$[0, 1, 0, -120, -976]$ |
\(y^2=x^3+x^2-120x-976\) |
2888.e1 |
2888a1 |
2888.e |
2888a |
$1$ |
$1$ |
\( 2^{3} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2, 5$ |
4.4.0.2, 5.5.0.1 |
2Cn, 5S4 |
$0.861382156$ |
$1$ |
|
$2$ |
$9576$ |
$1.508987$ |
$1462911232$ |
$[0, 1, 0, -153184, 23025409]$ |
\(y^2=x^3+x^2-153184x+23025409\) |
2888.f1 |
2888f1 |
2888.f |
2888f |
$1$ |
$1$ |
\( 2^{3} \cdot 19^{2} \) |
\( - 2^{8} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.166536130$ |
$1$ |
|
$2$ |
$2880$ |
$0.860741$ |
$-1024/19$ |
$[0, -1, 0, -481, -23211]$ |
\(y^2=x^3-x^2-481x-23211\) |