Properties

Label 28800dj
Number of curves $2$
Conductor $28800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 28800dj have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 28800dj do not have complex multiplication.

Modular form 28800.2.a.dj

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} + 2 q^{11} + 2 q^{13} - 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 28800dj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28800.k2 28800dj1 \([0, 0, 0, 150, 2500]\) \(128\) \(-2916000000\) \([2]\) \(12288\) \(0.49760\) \(\Gamma_0(N)\)-optimal
28800.k1 28800dj2 \([0, 0, 0, -2100, 34000]\) \(10976\) \(93312000000\) \([2]\) \(24576\) \(0.84417\)