Properties

Label 2880.v
Number of curves $2$
Conductor $2880$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("v1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2880.v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2880.v1 2880h2 \([0, 0, 0, -972, -9936]\) \(157464/25\) \(16124313600\) \([2]\) \(1536\) \(0.68124\)  
2880.v2 2880h1 \([0, 0, 0, 108, -864]\) \(1728/5\) \(-403107840\) \([2]\) \(768\) \(0.33467\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2880.v have rank \(0\).

Complex multiplication

The elliptic curves in class 2880.v do not have complex multiplication.

Modular form 2880.2.a.v

sage: E.q_eigenform(10)
 
\(q + q^{5} - 2 q^{7} - 2 q^{11} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.