# Properties

 Label 2880.v Number of curves $2$ Conductor $2880$ CM no Rank $0$ Graph

# Related objects

Show commands: SageMath
sage: E = EllipticCurve("v1")

sage: E.isogeny_class()

## Elliptic curves in class 2880.v

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2880.v1 2880h2 $$[0, 0, 0, -972, -9936]$$ $$157464/25$$ $$16124313600$$ $$[2]$$ $$1536$$ $$0.68124$$
2880.v2 2880h1 $$[0, 0, 0, 108, -864]$$ $$1728/5$$ $$-403107840$$ $$[2]$$ $$768$$ $$0.33467$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 2880.v have rank $$0$$.

## Complex multiplication

The elliptic curves in class 2880.v do not have complex multiplication.

## Modular form2880.2.a.v

sage: E.q_eigenform(10)

$$q + q^{5} - 2 q^{7} - 2 q^{11} + 2 q^{17} + 4 q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.