# Properties

 Label 2880.n Number of curves $2$ Conductor $2880$ CM no Rank $1$ Graph # Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")

sage: E.isogeny_class()

## Elliptic curves in class 2880.n

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2880.n1 2880a2 $$[0, 0, 0, -4428, 112752]$$ $$3721734/25$$ $$64497254400$$ $$$$ $$3072$$ $$0.90887$$
2880.n2 2880a1 $$[0, 0, 0, -108, 3888]$$ $$-108/5$$ $$-6449725440$$ $$$$ $$1536$$ $$0.56230$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 2880.n have rank $$1$$.

## Complex multiplication

The elliptic curves in class 2880.n do not have complex multiplication.

## Modular form2880.2.a.n

sage: E.q_eigenform(10)

$$q - q^{5} + 2q^{7} + 2q^{11} - 4q^{13} + 2q^{17} - 4q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 