Properties

Label 288.a
Number of curves $2$
Conductor $288$
CM \(\Q(\sqrt{-1}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 288.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
288.a1 288a2 \([0, 0, 0, -12, 0]\) \(1728\) \(110592\) \([2]\) \(32\) \(-0.34273\)   \(-4\)
288.a2 288a1 \([0, 0, 0, 3, 0]\) \(1728\) \(-1728\) \([2]\) \(16\) \(-0.68931\) \(\Gamma_0(N)\)-optimal \(-4\)

Rank

sage: E.rank()
 

The elliptic curves in class 288.a have rank \(1\).

Complex multiplication

Each elliptic curve in class 288.a has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).

Modular form 288.2.a.a

sage: E.q_eigenform(10)
 
\(q - 4q^{5} - 6q^{13} - 8q^{17} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.