Show commands for:
SageMath
sage: E = EllipticCurve("cs1")
sage: E.isogeny_class()
Elliptic curves in class 287490cs
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
287490.cs3 | 287490cs1 | [1, 1, 1, -4820, -83323] | [2] | 829440 | \(\Gamma_0(N)\)-optimal |
287490.cs2 | 287490cs2 | [1, 1, 1, -32200, 2150885] | [2, 2] | 1658880 | |
287490.cs1 | 287490cs3 | [1, 1, 1, -511350, 140529405] | [2] | 3317760 | |
287490.cs4 | 287490cs4 | [1, 1, 1, 8870, 7309277] | [2] | 3317760 |
Rank
sage: E.rank()
The elliptic curves in class 287490cs have rank \(1\).
Complex multiplication
The elliptic curves in class 287490cs do not have complex multiplication.Modular form 287490.2.a.cs
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.