# Properties

 Label 287490.bc5 Conductor $287490$ Discriminant $3.119\times 10^{21}$ j-invariant $$\frac{47595748626367201}{1215506250000}$$ CM no Rank $2$ Torsion structure $$\Z/{2}\Z \times \Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -10335979, -12505609594]) # or

sage: E = EllipticCurve("287490bc4")

gp: E = ellinit([1, 0, 1, -10335979, -12505609594]) \\ or

gp: E = ellinit("287490bc4")

magma: E := EllipticCurve([1, 0, 1, -10335979, -12505609594]); // or

magma: E := EllipticCurve("287490bc4");

$$y^2 + x y + y = x^{3} - 10335979 x - 12505609594$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(5578, -324352\right)$$ $$\left(\frac{4431148}{441}, \frac{8730041753}{9261}\right)$$ $$\hat{h}(P)$$ ≈ $2.923941408312019$ $8.643224427902947$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(3703, -1852\right)$$, $$\left(-1625, 812\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-1736, 15242\right)$$, $$\left(-1736, -13507\right)$$, $$\left(-1625, 812\right)$$, $$\left(3703, -1852\right)$$, $$\left(5578, 318773\right)$$, $$\left(5578, -324352\right)$$, $$\left(20131, 2807336\right)$$, $$\left(20131, -2827468\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$287490$$ = $$2 \cdot 3 \cdot 5 \cdot 7 \cdot 37^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$3118656485929556250000$$ = $$2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4} \cdot 37^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{47595748626367201}{1215506250000}$$ = $$2^{-4} \cdot 3^{-4} \cdot 5^{-8} \cdot 7^{-4} \cdot 13^{3} \cdot 61^{3} \cdot 457^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$17.8427753728$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.0843311739452$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$128$$  = $$2\cdot2^{2}\cdot2\cdot2\cdot2^{2}$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

Modular form 287490.2.a.bc

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 4q^{11} + q^{12} + 2q^{13} + q^{14} - q^{15} + q^{16} - 2q^{17} - q^{18} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 25952256 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$12.037617549$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$3$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$5$$ $$2$$ $$I_{8}$$ Non-split multiplicative 1 1 8 8
$$7$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$37$$ $$4$$ $$I_0^{*}$$ Additive 1 2 6 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X189.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 6 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 4 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$ and has index 48.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 287490.bc consists of 8 curves linked by isogenies of degrees dividing 16.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ $$\Q(\sqrt{37})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$2$ $$\Q(\sqrt{-37})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(i, \sqrt{37})$$ $$\Z/4\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{-6}, \sqrt{37})$$ $$\Z/2\Z \times \Z/8\Z$$ Not in database
$4$ $$\Q(\sqrt{6}, \sqrt{37})$$ $$\Z/2\Z \times \Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.