Learn more

Refine search


Results (1-50 of 798 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
286650.a1 286650.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $5.396979092$ $[1, -1, 0, -53517, -4751909]$ \(y^2+xy=x^3-x^2-53517x-4751909\) 3.4.0.a.1, 21.8.0-3.a.1.1, 312.8.0.?, 2184.16.0.? $[(2543, 126398)]$
286650.a2 286650.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.798993030$ $[1, -1, 0, -35142, -8072884]$ \(y^2+xy=x^3-x^2-35142x-8072884\) 3.4.0.a.1, 21.8.0-3.a.1.2, 312.8.0.?, 2184.16.0.? $[(499, 9673)]$
286650.b1 286650.b \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.741084683$ $[1, -1, 0, -492, 566]$ \(y^2+xy=x^3-x^2-492x+566\) 8.2.0.b.1 $[(-1, 33), (25, 46)]$
286650.c1 286650.c \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.467814012$ $[1, -1, 0, -1086192, -422887284]$ \(y^2+xy=x^3-x^2-1086192x-422887284\) 2.3.0.a.1, 104.6.0.?, 210.6.0.?, 10920.12.0.? $[(-642, 3408)]$
286650.c2 286650.c \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.935628025$ $[1, -1, 0, 347058, -1459127034]$ \(y^2+xy=x^3-x^2+347058x-1459127034\) 2.3.0.a.1, 104.6.0.?, 420.6.0.?, 10920.12.0.? $[(1633, 58008)]$
286650.d1 286650.d \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -137763117, -619316472209]$ \(y^2+xy=x^3-x^2-137763117x-619316472209\) 2.3.0.a.1, 120.6.0.?, 1820.6.0.?, 2184.6.0.?, 10920.12.0.? $[ ]$
286650.d2 286650.d \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -3809367, -20409255959]$ \(y^2+xy=x^3-x^2-3809367x-20409255959\) 2.3.0.a.1, 120.6.0.?, 910.6.0.?, 2184.6.0.?, 10920.12.0.? $[ ]$
286650.e1 286650.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 2934258, -1226791084]$ \(y^2+xy=x^3-x^2+2934258x-1226791084\) 1092.2.0.? $[ ]$
286650.f1 286650.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $34.17426140$ $[1, -1, 0, -37700952, -89090981344]$ \(y^2+xy=x^3-x^2-37700952x-89090981344\) 1560.2.0.? $[(7500792854596501/400633, 642196433014485763099276/400633)]$
286650.g1 286650.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.636434952$ $[1, -1, 0, -769407, 259960301]$ \(y^2+xy=x^3-x^2-769407x+259960301\) 1560.2.0.? $[(529, 613)]$
286650.h1 286650.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.775895424$ $[1, -1, 0, 59883, 3559541]$ \(y^2+xy=x^3-x^2+59883x+3559541\) 1092.2.0.? $[(58, 2659)]$
286650.i1 286650.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -24117, -145909]$ \(y^2+xy=x^3-x^2-24117x-145909\) 8.2.0.b.1 $[ ]$
286650.j1 286650.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -567495567, -5203311064659]$ \(y^2+xy=x^3-x^2-567495567x-5203311064659\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.c.1, 105.8.0.?, $\ldots$ $[ ]$
286650.j2 286650.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -564408567, -5262720379659]$ \(y^2+xy=x^3-x^2-564408567x-5262720379659\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.b.1, 105.8.0.?, $\ldots$ $[ ]$
286650.j3 286650.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -8362692, -4177561284]$ \(y^2+xy=x^3-x^2-8362692x-4177561284\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.c.1, 105.8.0.?, $\ldots$ $[ ]$
286650.j4 286650.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 29453058, -31518348534]$ \(y^2+xy=x^3-x^2+29453058x-31518348534\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 56.6.0.b.1, 105.8.0.?, $\ldots$ $[ ]$
286650.k1 286650.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.979085854$ $[1, -1, 0, -1550227317, 23493534304841]$ \(y^2+xy=x^3-x^2-1550227317x+23493534304841\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 105.8.0.?, $\ldots$ $[(22564, 32593)]$
286650.k2 286650.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.958171709$ $[1, -1, 0, -96911817, 366924753341]$ \(y^2+xy=x^3-x^2-96911817x+366924753341\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 105.8.0.?, 156.48.0.?, $\ldots$ $[(5833, 5683)]$
286650.k3 286650.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.937257563$ $[1, -1, 0, -19589817, 30632167341]$ \(y^2+xy=x^3-x^2-19589817x+30632167341\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 105.8.0.?, $\ldots$ $[(-1086, 225543)]$
286650.k4 286650.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.874515127$ $[1, -1, 0, -4301817, -2894416659]$ \(y^2+xy=x^3-x^2-4301817x-2894416659\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 105.8.0.?, 156.48.0.?, $\ldots$ $[(10935/2, 596763/2)]$
286650.l1 286650.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -5066217, -4387819059]$ \(y^2+xy=x^3-x^2-5066217x-4387819059\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 105.8.0.?, 117.36.0.?, $\ldots$ $[ ]$
286650.l2 286650.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -49842, -8523684]$ \(y^2+xy=x^3-x^2-49842x-8523684\) 3.12.0.a.1, 104.2.0.?, 105.24.0.?, 117.36.0.?, 312.24.1.?, $\ldots$ $[ ]$
286650.l3 286650.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 5283, 241191]$ \(y^2+xy=x^3-x^2+5283x+241191\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 105.8.0.?, 117.36.0.?, $\ldots$ $[ ]$
286650.m1 286650.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -21492, -2305584]$ \(y^2+xy=x^3-x^2-21492x-2305584\) 52.2.0.a.1 $[ ]$
286650.n1 286650.n \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -580617, 169046541]$ \(y^2+xy=x^3-x^2-580617x+169046541\) 312.2.0.? $[ ]$
286650.o1 286650.o \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $5.127970182$ $[1, -1, 0, -33777, 2136861]$ \(y^2+xy=x^3-x^2-33777x+2136861\) 312.2.0.? $[(25, 1131)]$
286650.p1 286650.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.125932182$ $[1, -1, 0, -697167, 224245741]$ \(y^2+xy=x^3-x^2-697167x+224245741\) 2184.2.0.? $[(443, 1259)]$
286650.q1 286650.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -34161192, -76847966784]$ \(y^2+xy=x^3-x^2-34161192x-76847966784\) 2184.2.0.? $[ ]$
286650.r1 286650.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.748888717$ $[1, -1, 0, -1655082, -729633164]$ \(y^2+xy=x^3-x^2-1655082x-729633164\) 312.2.0.? $[(1703, 36413)]$
286650.s1 286650.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $6.187984053$ $[1, -1, 0, 100833, 34881741]$ \(y^2+xy=x^3-x^2+100833x+34881741\) 2184.2.0.? $[(4887/2, 351147/2)]$
286650.t1 286650.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $4.659480932$ $[1, -1, 0, -28450242, -57926063084]$ \(y^2+xy=x^3-x^2-28450242x-57926063084\) 312.2.0.? $[(-3295, 7601), (20519, 2817653)]$
286650.u1 286650.u \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1053117, 792921541]$ \(y^2+xy=x^3-x^2-1053117x+792921541\) 52.2.0.a.1 $[ ]$
286650.v1 286650.v \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.295175149$ $[1, -1, 0, -1495692, 4325833966]$ \(y^2+xy=x^3-x^2-1495692x+4325833966\) 1560.2.0.? $[(2489, 125318)]$
286650.w1 286650.w \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.920538267$ $[1, -1, 0, 873, 16771]$ \(y^2+xy=x^3-x^2+873x+16771\) 312.2.0.? $[(23, 209)]$
286650.x1 286650.x \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.568612047$ $[1, -1, 0, -9399042, -11088687884]$ \(y^2+xy=x^3-x^2-9399042x-11088687884\) 2.3.0.a.1, 40.6.0.b.1, 156.6.0.?, 1560.12.0.? $[(5039, 261068)]$
286650.x2 286650.x \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.784306023$ $[1, -1, 0, -579042, -178347884]$ \(y^2+xy=x^3-x^2-579042x-178347884\) 2.3.0.a.1, 40.6.0.c.1, 78.6.0.?, 1560.12.0.? $[(1364, 38918)]$
286650.y1 286650.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -31537242, -68162555084]$ \(y^2+xy=x^3-x^2-31537242x-68162555084\) 1092.2.0.? $[ ]$
286650.z1 286650.z \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $11.13684803$ $[1, -1, 0, -987878817, -11950735818659]$ \(y^2+xy=x^3-x^2-987878817x-11950735818659\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 104.12.0.?, 168.12.0.?, $\ldots$ $[(2992729/9, 1013767532/9)]$
286650.z2 286650.z \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.568424017$ $[1, -1, 0, -61778817, -186487518659]$ \(y^2+xy=x^3-x^2-61778817x-186487518659\) 2.6.0.a.1, 20.12.0-2.a.1.1, 104.12.0.?, 168.12.0.?, 520.24.0.?, $\ldots$ $[(20009, 2556683)]$
286650.z3 286650.z \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $11.13684803$ $[1, -1, 0, -38846817, -326670834659]$ \(y^2+xy=x^3-x^2-38846817x-326670834659\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 104.12.0.?, 168.12.0.?, $\ldots$ $[(495521/5, 322073791/5)]$
286650.z4 286650.z \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $11.13684803$ $[1, -1, 0, -5330817, -491358659]$ \(y^2+xy=x^3-x^2-5330817x-491358659\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 104.12.0.?, 168.12.0.?, $\ldots$ $[(853451/13, 693902756/13)]$
286650.ba1 286650.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $11.37574055$ $[1, -1, 0, -1202168067, -16042599251659]$ \(y^2+xy=x^3-x^2-1202168067x-16042599251659\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.y.1, 104.12.0.?, 168.12.0.?, $\ldots$ $[(241525, 117279229)]$
286650.ba2 286650.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.687870277$ $[1, -1, 0, -78500067, -226972151659]$ \(y^2+xy=x^3-x^2-78500067x-226972151659\) 2.6.0.a.1, 40.12.0.b.1, 84.12.0.?, 104.12.0.?, 260.12.0.?, $\ldots$ $[(11029, 493198)]$
286650.ba3 286650.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.843935138$ $[1, -1, 0, -22052067, 36470664341]$ \(y^2+xy=x^3-x^2-22052067x+36470664341\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.y.1, 84.12.0.?, 104.12.0.?, $\ldots$ $[(-901, 236263)]$
286650.ba4 286650.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z$ $11.37574055$ $[1, -1, 0, 141999933, -1272362651659]$ \(y^2+xy=x^3-x^2+141999933x-1272362651659\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.s.1, 84.12.0.?, 104.12.0.?, $\ldots$ $[(7658869/31, 17891581618/31)]$
286650.bb1 286650.bb \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -99120492, -403422049584]$ \(y^2+xy=x^3-x^2-99120492x-403422049584\) 312.2.0.? $[ ]$
286650.bc1 286650.bc \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1104567, 447040341]$ \(y^2+xy=x^3-x^2-1104567x+447040341\) 2.3.0.a.1, 104.6.0.?, 168.6.0.?, 1092.6.0.?, 2184.12.0.? $[ ]$
286650.bc2 286650.bc \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -75567, 5599341]$ \(y^2+xy=x^3-x^2-75567x+5599341\) 2.3.0.a.1, 104.6.0.?, 168.6.0.?, 546.6.0.?, 2184.12.0.? $[ ]$
286650.bd1 286650.bd \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $1.586647248$ $[1, -1, 0, -5742, -162324]$ \(y^2+xy=x^3-x^2-5742x-162324\) 8.2.0.b.1 $[(-47, 69), (135, 1161)]$
286650.be1 286650.be \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1325067, 69752591]$ \(y^2+xy=x^3-x^2-1325067x+69752591\) 2.3.0.a.1, 120.6.0.?, 156.6.0.?, 520.6.0.?, 1560.12.0.? $[ ]$
Next   displayed columns for results