# Properties

 Label 28611u1 Conductor 28611 Discriminant 5226097476897 j-invariant $$\frac{30664297}{297}$$ CM no Rank 1 Torsion Structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, -1, 1, -16961, 847280]); // or

magma: E := EllipticCurve("28611u1");

sage: E = EllipticCurve([1, -1, 1, -16961, 847280]) # or

sage: E = EllipticCurve("28611u1")

gp: E = ellinit([1, -1, 1, -16961, 847280]) \\ or

gp: E = ellinit("28611u1")

$$y^2 + x y + y = x^{3} - x^{2} - 16961 x + 847280$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(-72, 1336\right)$$ $$\hat{h}(P)$$ ≈ 1.21858875359

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(81, -41\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-72, 1336\right)$$, $$\left(-72, -1265\right)$$, $$\left(64, 112\right)$$, $$\left(64, -177\right)$$, $$\left(81, -41\right)$$, $$\left(145, 1119\right)$$, $$\left(145, -1265\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$28611$$ = $$3^{2} \cdot 11 \cdot 17^{2}$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$5226097476897$$ = $$3^{9} \cdot 11 \cdot 17^{6}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{30664297}{297}$$ = $$3^{-3} \cdot 11^{-1} \cdot 313^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1.21858875359$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.768651085684$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$8$$  = $$2\cdot1\cdot2^{2}$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$2$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 28611.2.a.g

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{2} - q^{4} - 2q^{5} - 4q^{7} + 3q^{8} + 2q^{10} + q^{11} - 2q^{13} + 4q^{14} - q^{16} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 61440 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L'(E,1)$$ ≈ $$1.87333913689$$

## Local data

This elliptic curve is not semistable.

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$2$$ $$I_3^{*}$$ Additive -1 2 9 3
$$11$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$17$$ $$4$$ $$I_0^{*}$$ Additive 1 2 6 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 6.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ordinary add ordinary ordinary split ordinary add ss ordinary ordinary ordinary ordinary ordinary ss ordinary 11 - 1 1 2 1 - 1,1 1 1 1 1 1 1,1 1 0 - 0 0 0 0 - 0,0 0 0 0 0 0 0,0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 28611u consists of 4 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{17})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{561})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{33})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
4 $$\Q(\sqrt{17}, \sqrt{33})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.