Show commands:
SageMath
E = EllipticCurve("ce1")
E.isogeny_class()
Elliptic curves in class 285090ce
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
285090.ce1 | 285090ce1 | \([1, 0, 0, -186364200, 979307640000]\) | \(-715832117907767882405148124801/65214833959432170000000\) | \(-65214833959432170000000\) | \([7]\) | \(78675968\) | \(3.4168\) | \(\Gamma_0(N)\)-optimal |
285090.ce2 | 285090ce2 | \([1, 0, 0, 1244830950, -31268332431570]\) | \(213331430131166950008878809576799/545828612088802939198075490730\) | \(-545828612088802939198075490730\) | \([]\) | \(550731776\) | \(4.3898\) |
Rank
sage: E.rank()
The elliptic curves in class 285090ce have rank \(0\).
Complex multiplication
The elliptic curves in class 285090ce do not have complex multiplication.Modular form 285090.2.a.ce
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.