Properties

Label 2850.l
Number of curves $1$
Conductor $2850$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2850.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2850.l1 2850h1 \([1, 0, 1, 39, -452]\) \(272199695/3735552\) \(-93388800\) \([]\) \(768\) \(0.21010\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2850.l1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2850.l do not have complex multiplication.

Modular form 2850.2.a.l

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + q^{11} + q^{12} + 4q^{13} + q^{16} + 4q^{17} - q^{18} - q^{19} + O(q^{20})\)  Toggle raw display