Show commands: SageMath
Rank
The elliptic curves in class 283920he have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 283920he do not have complex multiplication.Modular form 283920.2.a.he
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 283920he
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 283920.he4 | 283920he1 | \([0, 1, 0, -1946997680, -16752013318572]\) | \(41285728533151645510969/17760741842188800000\) | \(351140694304987052192563200000\) | \([2]\) | \(464486400\) | \(4.3656\) | \(\Gamma_0(N)\)-optimal |
| 283920.he2 | 283920he2 | \([0, 1, 0, -26660259760, -1674804307485100]\) | \(105997782562506306791694649/51649016225625000000\) | \(1021132539326434429440000000000\) | \([2, 2]\) | \(928972800\) | \(4.7122\) | |
| 283920.he3 | 283920he3 | \([0, 1, 0, -22218453040, -2251171370749612]\) | \(-61354313914516350666047929/75227254486083984375000\) | \(-1487288684538759375000000000000000\) | \([2]\) | \(1857945600\) | \(5.0588\) | |
| 283920.he1 | 283920he4 | \([0, 1, 0, -426514259760, -107213388658685100]\) | \(434014578033107719741685694649/103121648659575000\) | \(2038777863556606141132800000\) | \([2]\) | \(1857945600\) | \(5.0588\) |