Show commands for:
SageMath
sage: E = EllipticCurve("gm1")
sage: E.isogeny_class()
Elliptic curves in class 283920gm
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
283920.gm3 | 283920gm1 | [0, 1, 0, -9520, 222548] | [2] | 884736 | \(\Gamma_0(N)\)-optimal |
283920.gm2 | 283920gm2 | [0, 1, 0, -63600, -6029100] | [2, 2] | 1769472 | |
283920.gm4 | 283920gm3 | [0, 1, 0, 17520, -20273772] | [2] | 3538944 | |
283920.gm1 | 283920gm4 | [0, 1, 0, -1010000, -391024620] | [2] | 3538944 |
Rank
sage: E.rank()
The elliptic curves in class 283920gm have rank \(0\).
Complex multiplication
The elliptic curves in class 283920gm do not have complex multiplication.Modular form 283920.2.a.gm
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.