Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([0, -1, 0, -111959176, 80679464176]); // or

magma: E := EllipticCurve("283920bp2");

sage: E = EllipticCurve([0, -1, 0, -111959176, 80679464176]) # or

sage: E = EllipticCurve("283920bp2")

gp: E = ellinit([0, -1, 0, -111959176, 80679464176]) \\ or

gp: E = ellinit("283920bp2")

$$y^2 = x^{3} - x^{2} - 111959176 x + 80679464176$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(\frac{268961794}{24025}, -\frac{1786837260222}{3723875}\right)$$ $$\hat{h}(P)$$ ≈ 14.752702014

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(10201, 0\right)$$, $$\left(724, 0\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-10924, 0\right)$$, $$\left(724, 0\right)$$, $$\left(10201, 0\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E) Conductor: $$283920$$ = $$2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2}$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$87007742995861868544000000$$ = $$2^{18} \cdot 3^{12} \cdot 5^{6} \cdot 7^{2} \cdot 13^{8}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{7850236389974007121}{4400862921000000}$$ = $$2^{-6} \cdot 3^{-12} \cdot 5^{-6} \cdot 7^{-2} \cdot 13^{-2} \cdot 31^{3} \cdot 61^{3} \cdot 1051^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$14.752702014$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega Real period: $$0.0522962834885$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$128$$  = $$2^{2}\cdot2\cdot2\cdot2\cdot2^{2}$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E) Torsion order: $$4$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 283920.2.a.bp

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q - q^{3} - q^{5} + q^{7} + q^{9} + q^{15} + 6q^{17} - 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 74317824 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

$$L'(E,1)$$ ≈ $$6.17209189397$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_10^{*}$$ Additive -1 4 18 6
$$3$$ $$2$$ $$I_{12}$$ Non-split multiplicative 1 1 12 12
$$5$$ $$2$$ $$I_{6}$$ Non-split multiplicative 1 1 6 6
$$7$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2
$$13$$ $$4$$ $$I_2^{*}$$ Additive 1 2 8 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by  and has index 6.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs
$$3$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 283920bp consists of 8 curves linked by isogenies of degrees dividing 12.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-13})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database
4 $$\Q(\sqrt{5}, \sqrt{13})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$$\Q(\sqrt{-5}, \sqrt{-182})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$$\Q(\sqrt{-13}, \sqrt{-14})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
6 6.2.1540467923904.2 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.