Properties

 Label 283920.bl1 Conductor $283920$ Discriminant $8.138\times 10^{17}$ j-invariant $$\frac{4791901410190533590281}{41160000}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

Related objects

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -949732736, 11265810186240]) # or

sage: E = EllipticCurve("283920bl7")

gp: E = ellinit([0, -1, 0, -949732736, 11265810186240]) \\ or

gp: E = ellinit("283920bl7")

magma: E := EllipticCurve([0, -1, 0, -949732736, 11265810186240]); // or

magma: E := EllipticCurve("283920bl7");

$$y^2 = x^{3} - x^{2} - 949732736 x + 11265810186240$$

Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(18418, 145250\right)$$ $$\hat{h}(P)$$ ≈ $3.8907861607292995$

Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(17793, 0\right)$$

Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(17793, 0\right)$$, $$(18418,\pm 145250)$$

Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$283920$$ = $$2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$813758293770240000$$ = $$2^{18} \cdot 3 \cdot 5^{4} \cdot 7^{3} \cdot 13^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{4791901410190533590281}{41160000}$$ = $$2^{-6} \cdot 3^{-1} \cdot 5^{-4} \cdot 7^{-3} \cdot 11^{3} \cdot 23^{3} \cdot 37^{3} \cdot 1801^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$3.89078616073$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.140186644239$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$48$$  = $$2^{2}\cdot1\cdot2\cdot3\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

Modular invariants

Modular form 283920.2.a.bl

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{3} - q^{5} + q^{7} + q^{9} + q^{15} - 6q^{17} + 8q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 63700992 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$6.54523506388$$

Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_10^{*}$$ Additive -1 4 18 6
$$3$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$5$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$7$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$13$$ $$2$$ $$I_0^{*}$$ Additive 1 2 6 0

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 6.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3, 4, 6 and 12.
Its isogeny class 283920.bl consists of 8 curves linked by isogenies of degrees dividing 12.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ $$\Q(\sqrt{13})$$ $$\Z/4\Z$$ Not in database
$2$ $$\Q(\sqrt{21})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$2$ $$\Q(\sqrt{39})$$ $$\Z/6\Z$$ Not in database
$2$ $$\Q(\sqrt{273})$$ $$\Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{3}, \sqrt{13})$$ $$\Z/12\Z$$ Not in database
$4$ $$\Q(\sqrt{13}, \sqrt{21})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{7}, \sqrt{39})$$ $$\Z/12\Z$$ Not in database
$4$ $$\Q(\sqrt{21}, \sqrt{39})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database
$6$ 6.0.5189226120000.1 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.