Properties

Label 28322.d
Number of curves 2
Conductor 28322
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("28322.d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 28322.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
28322.d1 28322i1 [1, 0, 1, -1307, -20688] [] 34560 \(\Gamma_0(N)\)-optimal
28322.d2 28322i2 [1, 0, 1, 8808, 80462] [] 103680  

Rank

sage: E.rank()
 

The elliptic curves in class 28322.d have rank \(0\).

Modular form 28322.2.a.d

sage: E.q_eigenform(10)
 
\( q - q^{2} - 2q^{3} + q^{4} + 3q^{5} + 2q^{6} - q^{8} + q^{9} - 3q^{10} - 2q^{12} - 2q^{13} - 6q^{15} + q^{16} - q^{18} + 7q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.