Properties

Label 28224gi
Number of curves $2$
Conductor $28224$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 28224gi have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 28224gi do not have complex multiplication.

Modular form 28224.2.a.gi

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} - 3 q^{11} - 4 q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 28224gi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28224.o2 28224gi1 \([0, 0, 0, 662676, 254659664]\) \(596183/864\) \(-46640327670928244736\) \([]\) \(645120\) \(2.4596\) \(\Gamma_0(N)\)-optimal
28224.o1 28224gi2 \([0, 0, 0, -20081964, 34815229904]\) \(-16591834777/98304\) \(-5306632837225613623296\) \([]\) \(1935360\) \(3.0089\)