Show commands for:
SageMath
sage: E = EllipticCurve("gd1")
sage: E.isogeny_class()
Elliptic curves in class 28224gd
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
28224.by4 | 28224gd1 | [0, 0, 0, 1764, -148176] | [2] | 49152 | \(\Gamma_0(N)\)-optimal |
28224.by3 | 28224gd2 | [0, 0, 0, -33516, -2222640] | [2, 2] | 98304 | |
28224.by2 | 28224gd3 | [0, 0, 0, -104076, 10224144] | [2] | 196608 | |
28224.by1 | 28224gd4 | [0, 0, 0, -527436, -147435120] | [2] | 196608 |
Rank
sage: E.rank()
The elliptic curves in class 28224gd have rank \(0\).
Complex multiplication
The elliptic curves in class 28224gd do not have complex multiplication.Modular form 28224.2.a.gd
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.