Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-1101324x-442162672\)
|
(homogenize, simplify) |
\(y^2z=x^3-1101324xz^2-442162672z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1101324x-442162672\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-644, 0)$ | $0$ | $2$ |
Integral points
\( \left(-644, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 28224 \) | = | $2^{6} \cdot 3^{2} \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $1032580140673794048$ | = | $2^{18} \cdot 3^{14} \cdot 7^{7} $ |
|
j-invariant: | $j$ | = | \( \frac{6570725617}{45927} \) | = | $3^{-8} \cdot 7^{-1} \cdot 1873^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2896137828125965784257969663$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.27236820688903288395035020607$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0015974661127929$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.205898616598488$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.14743606245666539577854373225$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.1794884996533231662283498580 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.179488500 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.147436 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.179488500\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 393216 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{8}^{*}$ | additive | -1 | 6 | 18 | 0 |
$3$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$7$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.107 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 336 = 2^{4} \cdot 3 \cdot 7 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 5 & 4 \\ 332 & 333 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 238 & 323 \end{array}\right),\left(\begin{array}{rr} 335 & 320 \\ 244 & 123 \end{array}\right),\left(\begin{array}{rr} 118 & 73 \\ 293 & 282 \end{array}\right),\left(\begin{array}{rr} 321 & 16 \\ 320 & 17 \end{array}\right),\left(\begin{array}{rr} 223 & 320 \\ 104 & 207 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 88 & 335 \\ 113 & 326 \end{array}\right)$.
The torsion field $K:=\Q(E[336])$ is a degree-$12386304$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/336\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 441 = 3^{2} \cdot 7^{2} \) |
$3$ | additive | $8$ | \( 3136 = 2^{6} \cdot 7^{2} \) |
$7$ | additive | $32$ | \( 576 = 2^{6} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 28224fw
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 21a3, its twist by $-168$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-6}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-42}) \) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-6}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.4.624529833984.19 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.156132458496.7 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.12745506816.17 | \(\Z/16\Z\) | not in database |
$8$ | 8.2.85365421682688.21 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.2599167103947239325696.8 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 7 |
---|---|---|---|
Reduction type | add | add | add |
$\lambda$-invariant(s) | - | - | - |
$\mu$-invariant(s) | - | - | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.