Properties

Label 28224ck
Number of curves $4$
Conductor $28224$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ck1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 28224ck have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 28224ck do not have complex multiplication.

Modular form 28224.2.a.ck

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 4 q^{11} + 2 q^{13} - 6 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 28224ck

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28224.bd4 28224ck1 \([0, 0, 0, 1764, 148176]\) \(432/7\) \(-9836344885248\) \([2]\) \(49152\) \(1.1737\) \(\Gamma_0(N)\)-optimal
28224.bd3 28224ck2 \([0, 0, 0, -33516, 2222640]\) \(740772/49\) \(275417656786944\) \([2, 2]\) \(98304\) \(1.5202\)  
28224.bd2 28224ck3 \([0, 0, 0, -104076, -10224144]\) \(11090466/2401\) \(26990930365120512\) \([2]\) \(196608\) \(1.8668\)  
28224.bd1 28224ck4 \([0, 0, 0, -527436, 147435120]\) \(1443468546/7\) \(78690759081984\) \([2]\) \(196608\) \(1.8668\)