Show commands:
SageMath
E = EllipticCurve("dw1")
E.isogeny_class()
Elliptic curves in class 28224.dw
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
28224.dw1 | 28224bn4 | \([0, 0, 0, -1049580, -413855568]\) | \(16581375\) | \(7711694390034432\) | \([2]\) | \(229376\) | \(2.1094\) | \(-28\) | |
28224.dw2 | 28224bn3 | \([0, 0, 0, -61740, -7260624]\) | \(-3375\) | \(-7711694390034432\) | \([2]\) | \(114688\) | \(1.7628\) | \(-7\) | |
28224.dw3 | 28224bn2 | \([0, 0, 0, -21420, 1206576]\) | \(16581375\) | \(65548320768\) | \([2]\) | \(32768\) | \(1.1365\) | \(-28\) | |
28224.dw4 | 28224bn1 | \([0, 0, 0, -1260, 21168]\) | \(-3375\) | \(-65548320768\) | \([2]\) | \(16384\) | \(0.78989\) | \(\Gamma_0(N)\)-optimal | \(-7\) |
Rank
sage: E.rank()
The elliptic curves in class 28224.dw have rank \(1\).
Complex multiplication
Each elliptic curve in class 28224.dw has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-7}) \).Modular form 28224.2.a.dw
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 7 & 14 \\ 2 & 1 & 14 & 7 \\ 7 & 14 & 1 & 2 \\ 14 & 7 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.