# Properties

 Label 28224.bi Number of curves $2$ Conductor $28224$ CM no Rank $1$ Graph # Related objects

Show commands: SageMath
sage: E = EllipticCurve("bi1")

sage: E.isogeny_class()

## Elliptic curves in class 28224.bi

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28224.bi1 28224dx2 $$[0, 0, 0, -21756, 1234800]$$ $$21882096/7$$ $$364309069824$$ $$$$ $$49152$$ $$1.1932$$
28224.bi2 28224dx1 $$[0, 0, 0, -1176, 24696]$$ $$-55296/49$$ $$-159385218048$$ $$$$ $$24576$$ $$0.84666$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 28224.bi have rank $$1$$.

## Complex multiplication

The elliptic curves in class 28224.bi do not have complex multiplication.

## Modular form 28224.2.a.bi

sage: E.q_eigenform(10)

$$q - 2q^{5} - 2q^{11} + 2q^{13} + 6q^{17} + 4q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 