Show commands for:
SageMath

sage: E = EllipticCurve("dn1")

sage: E.isogeny_class()

## Elliptic curves in class 28050.dn

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|

28050.dn1 | 28050dg2 | [1, 0, 0, -3588, 52542] | [2] | 49152 | |

28050.dn2 | 28050dg1 | [1, 0, 0, 662, 5792] | [2] | 24576 | \(\Gamma_0(N)\)-optimal |

## Rank

sage: E.rank()

The elliptic curves in class 28050.dn have rank \(0\).

## Complex multiplication

The elliptic curves in class 28050.dn do not have complex multiplication.## Modular form 28050.2.a.dn

sage: E.q_eigenform(10)

## Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.