Minimal Weierstrass equation
\(y^2+xy=x^3-299213x+62971917\)
Mordell-Weil group structure
\(\Z/{2}\Z\)
Torsion generators
\( \left(\frac{1263}{4}, -\frac{1263}{8}\right) \)
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 28050 \) | = | \(2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(21914062500 \) | = | \(2^{2} \cdot 3 \cdot 5^{10} \cdot 11 \cdot 17 \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{189602977175292169}{1402500} \) | = | \(2^{-2} \cdot 3^{-1} \cdot 5^{-4} \cdot 11^{-1} \cdot 17^{-1} \cdot 574489^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.83266859240788516070629327096\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 8 \) = \( 2\cdot1\cdot2^{2}\cdot1\cdot1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(4\) = $2^2$ (exact) |
Modular invariants
Modular form 28050.2.a.dg
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 196608 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 6.6613487392630812856503461676841542640 \)
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(I_{2}\) | Split multiplicative | -1 | 1 | 2 | 2 |
\(3\) | \(1\) | \(I_{1}\) | Split multiplicative | -1 | 1 | 1 | 1 |
\(5\) | \(4\) | \(I_4^{*}\) | Additive | 1 | 2 | 10 | 4 |
\(11\) | \(1\) | \(I_{1}\) | Non-split multiplicative | 1 | 1 | 1 | 1 |
\(17\) | \(1\) | \(I_{1}\) | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13d.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 | 11 | 17 |
---|---|---|---|---|---|
Reduction type | split | split | add | nonsplit | split |
$\lambda$-invariant(s) | 6 | 1 | - | 0 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class 28050.dg
consists of 3 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{561}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{15}) \) | \(\Z/4\Z\) | Not in database |
$2$ | \(\Q(\sqrt{935}) \) | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{15}, \sqrt{561})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$4$ | 4.4.2019600.2 | \(\Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \times \Z/4\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/16\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.