sage:E = EllipticCurve("h1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 2800h1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1 |
7 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+T+3T2 |
1.3.b
|
11 |
1+3T+11T2 |
1.11.d
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1−3T+17T2 |
1.17.ad
|
19 |
1−7T+19T2 |
1.19.ah
|
23 |
1+23T2 |
1.23.a
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 2800h do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 2800h
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2800.c1 |
2800h1 |
[0,0,0,−10300,−414500] |
−30211716096/1071875 |
−4287500000000 |
[] |
11520 |
1.1962
|
Γ0(N)-optimal |