Properties

Label 2800f
Number of curves 11
Conductor 28002800
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 2800f1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
771T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+2T+3T2 1 + 2 T + 3 T^{2} 1.3.c
1111 1+T+11T2 1 + T + 11 T^{2} 1.11.b
1313 14T+13T2 1 - 4 T + 13 T^{2} 1.13.ae
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 1+6T+19T2 1 + 6 T + 19 T^{2} 1.19.g
2323 1+3T+23T2 1 + 3 T + 23 T^{2} 1.23.d
2929 1+3T+29T2 1 + 3 T + 29 T^{2} 1.29.d
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2800f do not have complex multiplication.

Modular form 2800.2.a.f

Copy content sage:E.q_eigenform(10)
 
q+q73q9q11+2q13+4q17+2q19+O(q20)q + q^{7} - 3 q^{9} - q^{11} + 2 q^{13} + 4 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 2800f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2800.r1 2800f1 [0,0,0,625,9375][0, 0, 0, 625, -9375] 172800/343172800/343 53593750000-53593750000 [][] 14401440 0.743210.74321 Γ0(N)\Gamma_0(N)-optimal