sage:E = EllipticCurve("f1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 2800f1 has
rank 0.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 2 | 1 |
| 5 | 1 |
| 7 | 1−T |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 3 |
1+2T+3T2 |
1.3.c
|
| 11 |
1+T+11T2 |
1.11.b
|
| 13 |
1−4T+13T2 |
1.13.ae
|
| 17 |
1+17T2 |
1.17.a
|
| 19 |
1+6T+19T2 |
1.19.g
|
| 23 |
1+3T+23T2 |
1.23.d
|
| 29 |
1+3T+29T2 |
1.29.d
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 2800f do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 2800f
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 2800.r1 |
2800f1 |
[0,0,0,625,−9375] |
172800/343 |
−53593750000 |
[] |
1440 |
0.74321
|
Γ0(N)-optimal |