Properties

Label 2800d
Number of curves 11
Conductor 28002800
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 2800d1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
771+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+2T+3T2 1 + 2 T + 3 T^{2} 1.3.c
1111 1+5T+11T2 1 + 5 T + 11 T^{2} 1.11.f
1313 1+13T2 1 + 13 T^{2} 1.13.a
1717 18T+17T2 1 - 8 T + 17 T^{2} 1.17.ai
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 17T+23T2 1 - 7 T + 23 T^{2} 1.23.ah
2929 1+3T+29T2 1 + 3 T + 29 T^{2} 1.29.d
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2800d do not have complex multiplication.

Modular form 2800.2.a.d

Copy content sage:E.q_eigenform(10)
 
q+2q3q7+q9q114q136q19+O(q20)q + 2 q^{3} - q^{7} + q^{9} - q^{11} - 4 q^{13} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 2800d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2800.bb1 2800d1 [0,1,0,28,147][0, -1, 0, -28, 147] 6288640/16807-6288640/16807 6722800-6722800 [][] 480480 0.0024397-0.0024397 Γ0(N)\Gamma_0(N)-optimal