Properties

Label 2800c
Number of curves 11
Conductor 28002800
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 2800c1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
771T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+3T+3T2 1 + 3 T + 3 T^{2} 1.3.d
1111 15T+11T2 1 - 5 T + 11 T^{2} 1.11.af
1313 15T+13T2 1 - 5 T + 13 T^{2} 1.13.af
1717 17T+17T2 1 - 7 T + 17 T^{2} 1.17.ah
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 1+2T+23T2 1 + 2 T + 23 T^{2} 1.23.c
2929 17T+29T2 1 - 7 T + 29 T^{2} 1.29.ah
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2800c do not have complex multiplication.

Modular form 2800.2.a.c

Copy content sage:E.q_eigenform(10)
 
qq3q72q9+5q11q133q17+6q19+O(q20)q - q^{3} - q^{7} - 2 q^{9} + 5 q^{11} - q^{13} - 3 q^{17} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 2800c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2800.i1 2800c1 [0,1,0,33,563][0, -1, 0, -33, -563] 1024/35-1024/35 140000000-140000000 [][] 768768 0.243390.24339 Γ0(N)\Gamma_0(N)-optimal