Properties

Label 2800b
Number of curves 11
Conductor 28002800
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 2800b1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
771+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+3T+3T2 1 + 3 T + 3 T^{2} 1.3.d
1111 15T+11T2 1 - 5 T + 11 T^{2} 1.11.af
1313 16T+13T2 1 - 6 T + 13 T^{2} 1.13.ag
1717 1T+17T2 1 - T + 17 T^{2} 1.17.ab
1919 13T+19T2 1 - 3 T + 19 T^{2} 1.19.ad
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2800b do not have complex multiplication.

Modular form 2800.2.a.b

Copy content sage:E.q_eigenform(10)
 
q+q3q72q9+q11+6q137q17q19+O(q20)q + q^{3} - q^{7} - 2 q^{9} + q^{11} + 6 q^{13} - 7 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 2800b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2800.v1 2800b1 [0,1,0,168,788][0, 1, 0, -168, 788] 10303010/49-10303010/49 2508800-2508800 [][] 576576 0.0774760.077476 Γ0(N)\Gamma_0(N)-optimal