Properties

Label 2800a
Number of curves $4$
Conductor $2800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2800a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2800a do not have complex multiplication.

Modular form 2800.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 3 q^{9} + 4 q^{11} - 2 q^{13} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 2800a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2800.p4 2800a1 \([0, 0, 0, 25, -250]\) \(432/7\) \(-28000000\) \([2]\) \(512\) \(0.10954\) \(\Gamma_0(N)\)-optimal
2800.p3 2800a2 \([0, 0, 0, -475, -3750]\) \(740772/49\) \(784000000\) \([2, 2]\) \(1024\) \(0.45611\)  
2800.p1 2800a3 \([0, 0, 0, -7475, -248750]\) \(1443468546/7\) \(224000000\) \([2]\) \(2048\) \(0.80269\)  
2800.p2 2800a4 \([0, 0, 0, -1475, 17250]\) \(11090466/2401\) \(76832000000\) \([2]\) \(2048\) \(0.80269\)