Properties

Label 279312ci
Number of curves 4
Conductor 279312
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("279312.ci1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 279312ci

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
279312.ci3 279312ci1 [0, 1, 0, -6524, -197748] [2] 394240 \(\Gamma_0(N)\)-optimal
279312.ci2 279312ci2 [0, 1, 0, -17104, 593636] [2, 2] 788480  
279312.ci1 279312ci3 [0, 1, 0, -249864, 47983572] [2] 1576960  
279312.ci4 279312ci4 [0, 1, 0, 46376, 4021556] [2] 1576960  

Rank

sage: E.rank()
 

The elliptic curves in class 279312ci have rank \(0\).

Modular form 279312.2.a.ci

sage: E.q_eigenform(10)
 
\( q + q^{3} - 2q^{5} + q^{9} + q^{11} + 2q^{13} - 2q^{15} - 6q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.