Learn more

Refine search


Results (1-50 of 62 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
2790.a1 2790.a \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\mathsf{trivial}$ $1.189851250$ $[1, -1, 0, -15, -235]$ \(y^2+xy=x^3-x^2-15x-235\)
2790.b1 2790.b \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\Z/2\Z$ $18.86171801$ $[1, -1, 0, -2283810, -1327854700]$ \(y^2+xy=x^3-x^2-2283810x-1327854700\)
2790.b2 2790.b \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\Z/2\Z$ $9.430859006$ $[1, -1, 0, -141090, -21224044]$ \(y^2+xy=x^3-x^2-141090x-21224044\)
2790.c1 2790.c \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2767680, 1772929620]$ \(y^2+xy=x^3-x^2-2767680x+1772929620\)
2790.c2 2790.c \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -172980, 27734400]$ \(y^2+xy=x^3-x^2-172980x+27734400\)
2790.c3 2790.c \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -170280, 28639980]$ \(y^2+xy=x^3-x^2-170280x+28639980\)
2790.c4 2790.c \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -33300, -1815264]$ \(y^2+xy=x^3-x^2-33300x-1815264\)
2790.c5 2790.c \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -10980, 421200]$ \(y^2+xy=x^3-x^2-10980x+421200\)
2790.c6 2790.c \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 540, 27216]$ \(y^2+xy=x^3-x^2+540x+27216\)
2790.d1 2790.d \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -171789, 30891653]$ \(y^2+xy=x^3-x^2-171789x+30891653\)
2790.e1 2790.e \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 0, -18414, -415152]$ \(y^2+xy=x^3-x^2-18414x-415152\)
2790.e2 2790.e \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -15354, -728460]$ \(y^2+xy=x^3-x^2-15354x-728460\)
2790.e3 2790.e \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -954, -11340]$ \(y^2+xy=x^3-x^2-954x-11340\)
2790.e4 2790.e \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 0, 4086, -50652]$ \(y^2+xy=x^3-x^2+4086x-50652\)
2790.f1 2790.f \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\Z/2\Z$ $0.349139195$ $[1, -1, 0, -5949, 178105]$ \(y^2+xy=x^3-x^2-5949x+178105\)
2790.f2 2790.f \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\Z/2\Z$ $0.698278391$ $[1, -1, 0, -369, 2893]$ \(y^2+xy=x^3-x^2-369x+2893\)
2790.g1 2790.g \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\mathsf{trivial}$ $4.718310562$ $[1, -1, 0, -6414, -230572]$ \(y^2+xy=x^3-x^2-6414x-230572\)
2790.g2 2790.g \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\Z/3\Z$ $1.572770187$ $[1, -1, 0, 561, 1773]$ \(y^2+xy=x^3-x^2+561x+1773\)
2790.h1 2790.h \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\Z/2\Z$ $0.827085596$ $[1, -1, 0, -9594, 364108]$ \(y^2+xy=x^3-x^2-9594x+364108\)
2790.h2 2790.h \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\Z/2\Z$ $0.413542798$ $[1, -1, 0, -594, 5908]$ \(y^2+xy=x^3-x^2-594x+5908\)
2790.i1 2790.i \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -118599, -9168707]$ \(y^2+xy=x^3-x^2-118599x-9168707\)
2790.i2 2790.i \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 372921, -65890115]$ \(y^2+xy=x^3-x^2+372921x-65890115\)
2790.j1 2790.j \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1449, -4667]$ \(y^2+xy=x^3-x^2-1449x-4667\)
2790.j2 2790.j \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 351, -707]$ \(y^2+xy=x^3-x^2+351x-707\)
2790.k1 2790.k \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 0, -5719239, 5265909873]$ \(y^2+xy=x^3-x^2-5719239x+5265909873\)
2790.k2 2790.k \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/6\Z$ $1$ $[1, -1, 0, -356859, 82633365]$ \(y^2+xy=x^3-x^2-356859x+82633365\)
2790.k3 2790.k \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -76779, 5903685]$ \(y^2+xy=x^3-x^2-76779x+5903685\)
2790.k4 2790.k \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 12501, 600453]$ \(y^2+xy=x^3-x^2+12501x+600453\)
2790.l1 2790.l \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\mathsf{trivial}$ $0.464840647$ $[1, -1, 0, -207459, -36507587]$ \(y^2+xy=x^3-x^2-207459x-36507587\)
2790.m1 2790.m \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -69, -127]$ \(y^2+xy=x^3-x^2-69x-127\)
2790.m2 2790.m \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 201, -1045]$ \(y^2+xy=x^3-x^2+201x-1045\)
2790.n1 2790.n \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -19088, -1137773]$ \(y^2+xy+y=x^3-x^2-19088x-1137773\)
2790.o1 2790.o \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -428, -3099]$ \(y^2+xy+y=x^3-x^2-428x-3099\)
2790.o2 2790.o \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 22, -219]$ \(y^2+xy+y=x^3-x^2+22x-219\)
2790.p1 2790.p \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\Z/2\Z$ $1.146005276$ $[1, -1, 1, -18113, 333281]$ \(y^2+xy+y=x^3-x^2-18113x+333281\)
2790.p2 2790.p \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\Z/2\Z$ $0.573002638$ $[1, -1, 1, 4207, 38657]$ \(y^2+xy+y=x^3-x^2+4207x+38657\)
2790.q1 2790.q \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\Z/3\Z$ $0.763871306$ $[1, -1, 1, -713, 8777]$ \(y^2+xy+y=x^3-x^2-713x+8777\)
2790.q2 2790.q \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\mathsf{trivial}$ $0.254623768$ $[1, -1, 1, 5047, -52919]$ \(y^2+xy+y=x^3-x^2+5047x-52919\)
2790.r1 2790.r \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, -4703, 125327]$ \(y^2+xy+y=x^3-x^2-4703x+125327\)
2790.r2 2790.r \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 22, 587]$ \(y^2+xy+y=x^3-x^2+22x+587\)
2790.s1 2790.s \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -1067393, 248622481]$ \(y^2+xy+y=x^3-x^2-1067393x+248622481\)
2790.s2 2790.s \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 3356287, 1775676817]$ \(y^2+xy+y=x^3-x^2+3356287x+1775676817\)
2790.t1 2790.t \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -336983, -70154769]$ \(y^2+xy+y=x^3-x^2-336983x-70154769\)
2790.t2 2790.t \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 20137, -4873233]$ \(y^2+xy+y=x^3-x^2+20137x-4873233\)
2790.u1 2790.u \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\mathsf{trivial}$ $0.169625409$ $[1, -1, 1, 877, -5709]$ \(y^2+xy+y=x^3-x^2+877x-5709\)
2790.v1 2790.v \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -1966028, -1060550449]$ \(y^2+xy+y=x^3-x^2-1966028x-1060550449\)
2790.v2 2790.v \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -122828, -16561969]$ \(y^2+xy+y=x^3-x^2-122828x-16561969\)
2790.w1 2790.w \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -8, 7]$ \(y^2+xy+y=x^3-x^2-8x+7\)
2790.w2 2790.w \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 22, 31]$ \(y^2+xy+y=x^3-x^2+22x+31\)
2790.x1 2790.x \( 2 \cdot 3^{2} \cdot 5 \cdot 31 \) $1$ $\mathsf{trivial}$ $0.250438710$ $[1, -1, 1, -2, 9]$ \(y^2+xy+y=x^3-x^2-2x+9\)
Next   Download to