Show commands: SageMath
Rank
The elliptic curves in class 277440gz have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 277440gz do not have complex multiplication.Modular form 277440.2.a.gz
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 277440gz
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 277440.gz4 | 277440gz1 | \([0, 1, 0, -23393201, 1321974751215]\) | \(-3579968623693264/1906997690433375\) | \(-754160244091719335368704000\) | \([2]\) | \(123863040\) | \(3.8364\) | \(\Gamma_0(N)\)-optimal |
| 277440.gz3 | 277440gz2 | \([0, 1, 0, -1954398721, 32909749248479]\) | \(521902963282042184836/6241849278890625\) | \(9873854801957532754944000000\) | \([2, 2]\) | \(247726080\) | \(4.1830\) | |
| 277440.gz1 | 277440gz3 | \([0, 1, 0, -31180067041, 2119149011469695]\) | \(1059623036730633329075378/154307373046875\) | \(488191408750944000000000000\) | \([2]\) | \(495452160\) | \(4.5295\) | |
| 277440.gz2 | 277440gz4 | \([0, 1, 0, -3624818721, -31681049059521]\) | \(1664865424893526702418/826424127435466125\) | \(2614607137896969881432899584000\) | \([2]\) | \(495452160\) | \(4.5295\) |