Show commands for:
SageMath
sage: E = EllipticCurve("cc1")
sage: E.isogeny_class()
Elliptic curves in class 277350cc
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
277350.cc2 | 277350cc1 | [1, 1, 1, 7163912, 2680353281] | [] | 24966144 | \(\Gamma_0(N)\)-optimal |
277350.cc1 | 277350cc2 | [1, 1, 1, -82281463, -336138727219] | [] | 74898432 |
Rank
sage: E.rank()
The elliptic curves in class 277350cc have rank \(0\).
Complex multiplication
The elliptic curves in class 277350cc do not have complex multiplication.Modular form 277350.2.a.cc
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.