Properties

Label 277350bg
Number of curves $2$
Conductor $277350$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("bg1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 277350bg

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
277350.bg2 277350bg1 \([1, 0, 1, -1734401, -590247052]\) \(5841725401/1857600\) \(183477562497225000000\) \([2]\) \(12773376\) \(2.5921\) \(\Gamma_0(N)\)-optimal
277350.bg1 277350bg2 \([1, 0, 1, -10979401, 13554602948]\) \(1481933914201/53916840\) \(5325436251481955625000\) \([2]\) \(25546752\) \(2.9386\)  

Rank

sage: E.rank()
 

The elliptic curves in class 277350bg have rank \(1\).

Complex multiplication

The elliptic curves in class 277350bg do not have complex multiplication.

Modular form 277350.2.a.bg

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - 2q^{7} - q^{8} + q^{9} - 2q^{11} + q^{12} + 2q^{13} + 2q^{14} + q^{16} + 4q^{17} - q^{18} + 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.