Show commands for:
SageMath
sage: E = EllipticCurve("bx1")
sage: E.isogeny_class()
Elliptic curves in class 277350.bx
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
277350.bx1 | 277350bx4 | [1, 0, 1, -38760626, -92252480602] | [2] | 34062336 | |
277350.bx2 | 277350bx2 | [1, 0, 1, -4091876, 798444398] | [2, 2] | 17031168 | |
277350.bx3 | 277350bx1 | [1, 0, 1, -3167376, 2166704398] | [2] | 8515584 | \(\Gamma_0(N)\)-optimal |
277350.bx4 | 277350bx3 | [1, 0, 1, 15784874, 6284427398] | [2] | 34062336 |
Rank
sage: E.rank()
The elliptic curves in class 277350.bx have rank \(1\).
Complex multiplication
The elliptic curves in class 277350.bx do not have complex multiplication.Modular form 277350.2.a.bx
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.