Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-1273075x-552982768\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-1273075xz^2-552982768z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1649905227x-25795014308154\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-2609/4, 2609/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 27735 \) | = | $3 \cdot 5 \cdot 43^{2}$ |
|
| Discriminant: | $\Delta$ | = | $509659895825625$ | = | $3 \cdot 5^{4} \cdot 43^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{36097320816649}{80625} \) | = | $3^{-1} \cdot 5^{-4} \cdot 43^{-1} \cdot 33049^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0672440930768668762700406327$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.18664403523008566453361937603$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9409369042227297$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.257289579964486$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.14213011703808162123378771456$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.5583421066854691822081788621 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $9$ = $3^2$ (exact) |
|
BSD formula
$$\begin{aligned} 2.558342107 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{9 \cdot 0.142130 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 2.558342107\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 325248 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $43$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.12.0.8 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5160 = 2^{3} \cdot 3 \cdot 5 \cdot 43 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1939 & 1938 \\ 658 & 3235 \end{array}\right),\left(\begin{array}{rr} 3097 & 8 \\ 2068 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 4523 & 4516 \\ 4562 & 1941 \end{array}\right),\left(\begin{array}{rr} 5153 & 8 \\ 5152 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 5154 & 5155 \end{array}\right),\left(\begin{array}{rr} 1724 & 1 \\ 3463 & 6 \end{array}\right),\left(\begin{array}{rr} 4792 & 5157 \\ 2995 & 5158 \end{array}\right)$.
The torsion field $K:=\Q(E[5160])$ is a degree-$2460663152640$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 5547 = 3 \cdot 43^{2} \) |
| $3$ | split multiplicative | $4$ | \( 9245 = 5 \cdot 43^{2} \) |
| $5$ | split multiplicative | $6$ | \( 5547 = 3 \cdot 43^{2} \) |
| $43$ | additive | $968$ | \( 15 = 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 27735.f
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 645.d1, its twist by $-43$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{129}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-129}) \) | \(\Z/4\Z\) | not in database |
| $4$ | 4.2.8586756.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{129})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.1179718057656576.13 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 43 |
|---|---|---|---|---|
| Reduction type | ord | split | split | add |
| $\lambda$-invariant(s) | 2 | 3 | 1 | - |
| $\mu$-invariant(s) | 1 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.