Minimal Weierstrass equation
\(y^2=x^3-96445200x-6892234634000\)
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(\frac{420607265}{2809}, \frac{8598661862175}{148877}\right) \) |
\(\hat{h}(P)\) | ≈ | $9.2358545388998303219125864368$ |
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 277200 \) | = | \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-20463837512186944370880000000 \) | = | \(-1 \cdot 2^{12} \cdot 3^{7} \cdot 5^{7} \cdot 7 \cdot 11^{15} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{2126464142970105856}{438611057788643355} \) | = | \(-1 \cdot 2^{12} \cdot 3^{-1} \cdot 5^{-1} \cdot 7^{-1} \cdot 11^{-15} \cdot 179^{3} \cdot 449^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(9.2358545388998303219125864368\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.017127743090277726287893874798\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 60 \) = \( 1\cdot2\cdot2\cdot1\cdot( 3 \cdot 5 ) \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(1\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 277200.2.a.nq
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 230400000 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 9.4913606256871046756956333488820884416 \)
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(1\) | \(II^{*}\) | Additive | -1 | 4 | 12 | 0 |
\(3\) | \(2\) | \(I_1^{*}\) | Additive | -1 | 2 | 7 | 1 |
\(5\) | \(2\) | \(I_1^{*}\) | Additive | 1 | 2 | 7 | 1 |
\(7\) | \(1\) | \(I_{1}\) | Split multiplicative | -1 | 1 | 1 | 1 |
\(11\) | \(15\) | \(I_{15}\) | Split multiplicative | -1 | 1 | 15 | 15 |
Galois representations
The 2-adic representation attached to this elliptic curve is surjective.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(5\) | B.4.2 |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
5.
Its isogeny class 277200nq
consists of 2 curves linked by isogenies of
degree 5.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.4620.1 | \(\Z/2\Z\) | Not in database |
$4$ | 4.0.18000.1 | \(\Z/5\Z\) | Not in database |
$6$ | 6.0.24652782000.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/3\Z\) | Not in database |
$10$ | 10.2.2216183165683593750000000000.1 | \(\Z/5\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/10\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.