Properties

Label 277200nq
Number of curves $2$
Conductor $277200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("nq1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 277200nq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
277200.nq2 277200nq1 [0, 0, 0, -32185200, 82303846000] [] 46080000 \(\Gamma_0(N)\)-optimal
277200.nq1 277200nq2 [0, 0, 0, -96445200, -6892234634000] [] 230400000  

Rank

sage: E.rank()
 

The elliptic curves in class 277200nq have rank \(1\).

Complex multiplication

The elliptic curves in class 277200nq do not have complex multiplication.

Modular form 277200.2.a.nq

sage: E.q_eigenform(10)
 
\( q + q^{7} + q^{11} + 6q^{13} - 7q^{17} + 5q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.