Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, 20, 22]) # or

sage: E = EllipticCurve("275.a4")

gp: E = ellinit([1, -1, 1, 20, 22]) \\ or

gp: E = ellinit("275.a4")

magma: E := EllipticCurve([1, -1, 1, 20, 22]); // or

magma: E := EllipticCurve("275.a4");

$$y^2+xy+y=x^3-x^2+20x+22$$

## Mordell-Weil group structure

$$\Z\times \Z/{4}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(8, 21\right)$$ $$\hat{h}(P)$$ ≈ $2.3844904924265576284815496429$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(4, 10\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-1, 0\right)$$, $$\left(4, 10\right)$$, $$\left(4, -15\right)$$, $$\left(8, 21\right)$$, $$\left(8, -30\right)$$, $$\left(79, 660\right)$$, $$\left(79, -740\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$275$$ = $$5^{2} \cdot 11$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-859375$$ = $$-1 \cdot 5^{7} \cdot 11$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{59319}{55}$$ = $$3^{3} \cdot 5^{-1} \cdot 11^{-1} \cdot 13^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$2.3844904924265576284815496429$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$1.8401405798554902509168216721$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$4$$  = $$2^{2}\cdot1$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q - q^{2} - q^{4} + 3q^{8} - 3q^{9} - q^{11} - 2q^{13} - q^{16} - 6q^{17} + 3q^{18} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 24 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$1.0969494293484273097814192758128800949$$

## Local data

This elliptic curve is semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$5$$ $$4$$ $$I_1^{*}$$ Additive 1 2 7 1
$$11$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13h.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 3 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ordinary ss add ss nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary 1 1,1 - 1,1 1 1 1 1 1 1 1 1 1 1 1 0 0,0 - 0,0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 275.a consists of 4 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-55})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ 4.2.1375.1 $$\Z/8\Z$$ Not in database $8$ 8.0.7086244000000.2 $$\Z/4\Z \times \Z/4\Z$$ Not in database $8$ 8.0.228765625.2 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.0.283449760000.2 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.2.500310421875.1 $$\Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.